COMPACT AND BACKLASH FREE.

single-position multi-position load holding full disengagement

TORQUE LIMITERS

SERIES SK + ES | 0.1 - 2,800 Nm

THE ULTIMATE COUPLING FROM 0.1 - 2,800 Nm

www.rwcouplings.com

BACKLASH-FREE TORQUE LIMITERS

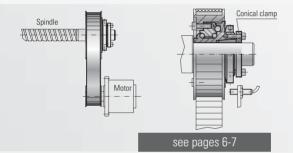
Areas of application:

- Machine tools
- CNC machining centers
- Woodworking machinery
- Automation equipment
- Textile machinery
- Industrial robots
- Sheet metal processing machinery
- Printing + Converting machinery
- Servo + DC motor drives

Features:

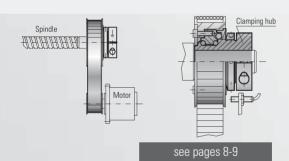
- Precise overload protection
- Absolutely backlash-free and torsionally rigid (R+W patented principle)
- Compact, simple design
- Disengagement detection is achieved through indexing ring movement
- Low residual friction following disengagement
- Low moment of inertia
- Disengagement within msecs

MODELS

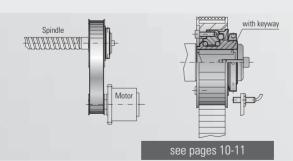

FEATURES

POSSIBLE APPLICATIONS

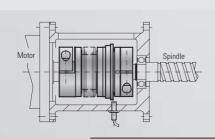
With conical clamp or clamping hub


- Integral bearings for timing belt pulley or sprocket
- Compact, simple design
- Adjustable settings

With clamping hub for indirect drives

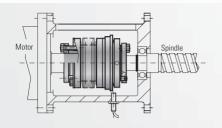

- Integral bearing for timing belt pulley or sprocket
- Compact, simple design
- Adjustable settings
- Frictional clamping hub
- Simple assembly

With keyway connection for indirect drives


- Integral bearings for timing belt pulley or sprocket
- Compact, simple design
- Adjustable settings

With clamping hub for direct drives

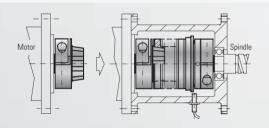
- Easy assembly
- Low moment of inertia
- Compact
- Compensates for shaft misalignment
- Adjustable settings


see page 12

MODELS FEATURES POSSIBLE APPLICATIONS

With conical clamp connection for direct drives

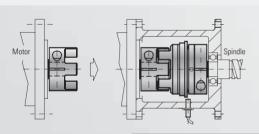
- High clamping forces
- High degree of operational dependability
- Compensates for shaft misalignment
- Adjustable settings



see page 13

With clamping hub, press-fit version for direct drives

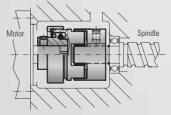
- Easy mounting and dismounting
- Electrically and thermally insulated
- Compensates for shaft misalignment
- Adjustable settings



see pages 14-15

With clamping hub for direct drives

- Easy assembly
- Damps vibration
- Compensates for shaft misalignment
- Adjustable settings


see pages 16-17

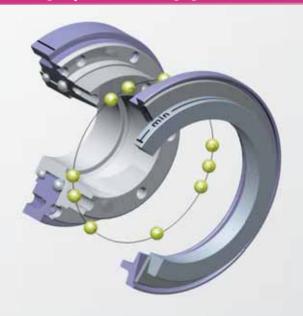
Torque limiter "Economy Class"

- Cost effective
- Compact
- Multi-position

see page 18

For use in explosive environments

- EEx availabe for the entire product range
- for the hazardous areas 1/21 and 2/22 the SERVOMAX EEx Elastomer couplings are registered according to the directive ATEX 95a


see page 19

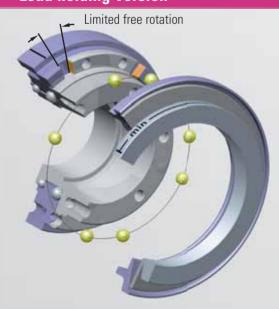
OVERVIEW

BACKLASH-FREE TORQUE LIMITERS FROM R+W

Single-position re-engagement

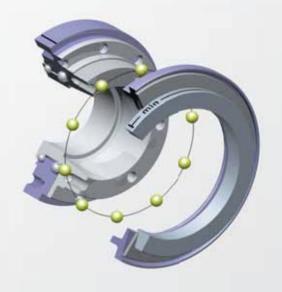
Standard version

- After the overload has been removed, the coupling will re-engage precisely 360 ° from the original disengagement position.
- Signal at overload
- Suitable for use in machine tools, packaging machinery, automation systems and other applications requiring precise timing.



R+W

Mechanical overload detection device


- In the event of a torque overload, the drive and driven elements are not fully separated and are only allowed limited rotation.
- Guaranteed to hold the load and signal an overload.
- Automatic engagement after the torque level has dropped.
- Signal at overload to detect with mechanical switch or proximity sensor.
- Suitable for use on presses, load lifting equipment or on any applications where the drive and driven elements cannot be fully separated.

Load holding Version

POSSIBLE FUNCTION SYSTEMS

Multi-position re-engagement

- Coupling re-engages at multiple set angular intervals.
- Immediate availability of the machine as soon as the overload has been removed.
- Signal at overload with mechanical switch or proximity sensor
- Standard re-engagement every 60°
- 30, 45, 90 or 120 degree re-engagement available upon request

LIMITERS

Note:

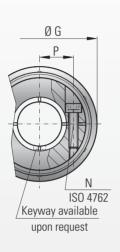
Coupling can be disengaged manually.

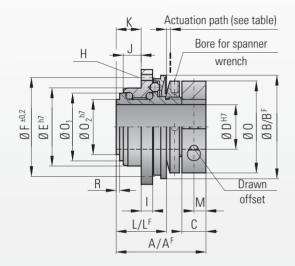
Please contact R+W.

- Permanent separation of drive and driven elements in the event of a torque overload.
- Signal at overload with mechanical switch or proximity sensor
- No residual friction
- Rotating elements slow down freely
- Coupling can be re-engaged manually (Engagement every 60°); other engagement intervals optional
- For use in high speed applications

Full disengagement

MODEL SK1




with conical clamp connection

BACKLASH FREE TORQUE LIMITER

Miniature Design Series 1.5 - 10

Standard clamping hub

Material:

High strength, hardened steel

Design:

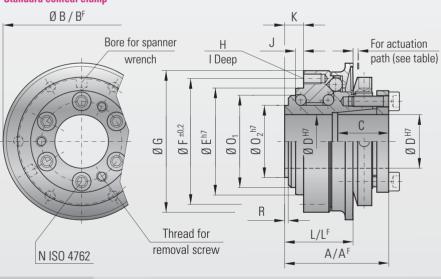
Model SK1 from 1.5 - 10 Nm with clamping hub Model SK1 from 15 - 2,800 Nm with conical clamp Absolutely backlash free through the frictional clamping connection

Temperature range:

-30 to +120° C

Service life:

Maintenace free when operated within the technical specifications

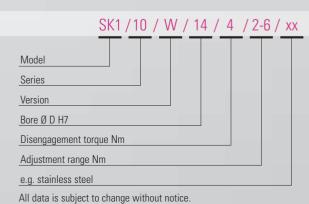

Fit tolerance:

Tolerance between hub and shaft 0.01 - 0.05 mm

Optional sealed version for food-grade applications (see page 26)

Design Series 15 - 2500

Standard conical clamp



Optional ATEX

Certified under the ATEX 95a directive for the hazardous zones 1/21 and 2/22

Ordering specifications

Possible versions

W = Single-position engagement

D = Multi-position engagement

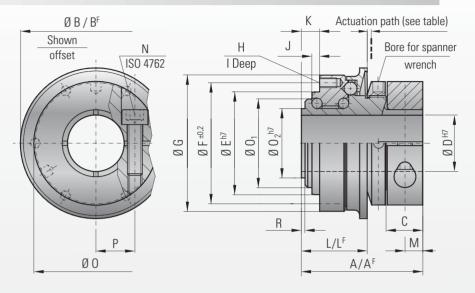
G = Load holding

F = Full disengagement

For the maximum permissible radial load capacity for all SK 1 models, see installation instructions on page 22/23

				Miniatur	e Design											
MODEL SK 1										Seri	es					
MIODEL SK I			1.5	2	4.5	10	15	30	60	150	200	300	500	800	1500	2500
Adjustment range available from - to (approx. values)	(Nm)	T _{KN}	0.1-0.6 0.4-1 0.8-2	0.2-1.5 0.5-2.2 1.5-3.5	1-3 2-4.5 3-7	2-6 4-12 7-18	5-15 12-25 20-40 35-70	5-20 10-30 20-60 50-100	10-30 25-80 50-115	20-70 45-150 80-225	30-90 60-160 140-280 250-400	100-200 150-240 220-440	80-200 200-350 320-650	400-650 500-800 650-950	600-800 700-1200 1000-1800	1500-2000 2000-2500 2300-2800
Adjustment range available from - to (approx. va ("F" Version)	ilues) (Nm)	T _{KN}	0.3-0.8 or 0.6-1.3	0.5-2	2.5-4.5	2-5 4-10 8-15	7-15	8-20 or 16-30	10-30 20-40 30-60	20-60 40-80 80-150	80-140 or 130-200	120-180 160-300 300-450	50-150 100-300 250-500	200-400 or 450-850	1000-1250 or 1250-1500	1400-2200 or 1800-2700
Overall length	(mm)	А	23	28	32	39	40	50	54	58	63	70	84	95	109	146
Overall length ("F" Version)	(mm)	A ^F	23	28	32	39	40	50	54	58	66	73	88	95	117	152
Actuation ring Ø	(mm)	В	23	29	35	45	55	65	73	92	99	120	135	152	174	242
Actuation ring Ø, ("F" Version)	(mm)	B ^F	24	32	42	51.5	62	70	83	98	117	132	155	177	187	258
Clamping fit length	(mm)	С	7	8	11	11	19	22	27.5	32	32	41	41	49	61	80
Inner diameter from Ø to Ø H7	(mm)	D	4-8	4-12	5-14	6-20	8-22	12-22	12-29	15-37	20-44	25-56	25-56	30-60	35-70	50-100
Pilot diameter h7	(mm)	Е	14	22	25	34	40	47	55	68	75	82	90	100	125	168
Bolt-hole circle diameter ± 0,2	(mm)	F	22	28	35	43	47	54	63	78	85	98	110	120	148	202
Flange outside diameter -0,2	(mm)	G	26	32	40	50	53	63	72	87	98	112	128	140	165	240
Thread		Н	4x M2	4x M2.5	6x M2.5	6x M3	6x M4	6x M5	6x M5	6x M6	6x M6	6x M8	6x M8	6x M10	6x M12	6x M16
Thread depth	(mm)		3	4	4	5	6	8	9	10	10	10	12	15	16	24
Centering length -0,2	(mm)	J	2.5	3.5	5	8	3	5	5	5	5	6	9	10	13.5	20
Distance	(mm)	K	5	6	8	11	8	11	11	12	12	15	21	19	25	34
Distance	(mm)	L	11	15	17	22	27	35	37	39	44	47	59	67	82	112
Distance ("F" Version)	(mm)	LF	11.5	16	18	24	27	37	39	41.5	47	51.5	62	75	94	120
Distance		М	3.5	4	5	5										
Screw ISO 4762		N	1x M 2.5	1x M 3	1x M 4	1x M 4	6x M4	6x M5	6x M5	6x M6	6x M6	6x M8	6x M8	6x M10	6x M12	6x M16
Tightening torque	(Nm)	IN	1	2	4	4.5	4	6	8	12	14	18	25	40	70	120
Outside diameter clamp ring Ø) (mm)	0	20	25	32	40										
Diameter	(mm)	01	13	18	21	30	35	42	49	62	67	75	84	91	112	154
Diameter h7	(mm)	02	11	14	17	24	27	32	39	50	55	65	72	75	92	128
Distance between centers	(mm)	Р	6.5	8	10	15										
Distance	(mm)	R	1	1.3	1.5	1.5	2.5	2.5	2.5	2.5	3	3	4	4	4.5	6
Moment of inertia	(10 ⁻³ kgm²)	J_{ges}	0.01	0.02	0.05	0.07	0.15	0.25	0.50	1.60	2.70	5.20	8.60	20	31.5	210
Approx. weight	(kg)		0.03	0.065	0.12	0.22	0.4	0.7	1.0	1.3	2.0	3.0	4.0	5.5	10	28
Actuation path	(mm)		0.7	0.8	0.8	1.2	1.5	1.5	1.7	1.9	2.2	2.2	2.2	2.2	3.0	3.0

 A^F , B^F , L^F = Full disengagement version


MODEL SKN

BACKLASH FREE TORQUE LIMITER

Series 15 - 1500

with clamping hub

Material:

Torque limiting portion: high-strength, hardened steel Clamping hub: up to size 500, aluminum; size 800 and up, steel

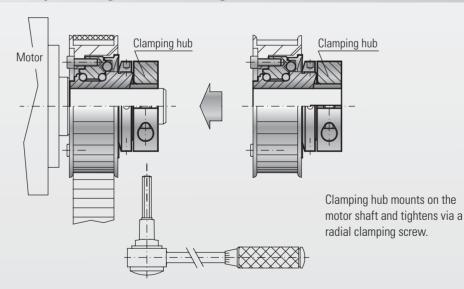
Design:

With clamping hub and 1 radial screw ISO 4762 Absolutely backlash free through frictional clamping connection

Temperature range:

-30 to +120° C

Service life:


Maintenance free when operated within the technical specifications

Fit tolerance:

Tolerance between hub an shaft 0.01 - 0.05 mm

Optional sealed version for food-grade applications (see page 26)

Easy mounting and dismounting

Optional ATEX

Certified under the ATEX 95a directive for the hazardous zones 1/21 and 2/22

Ordering specifications

Model Series Version Bore Ø D H7 Disengagement torque Nm Adjustment range Nm e.g. stainless steel All data is subject to change without notice.

Possible versions

W = Single-position engagement D = Multi-position engagement

G = Load holding

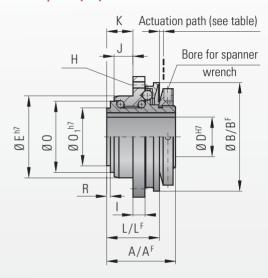
F = Full disengagement

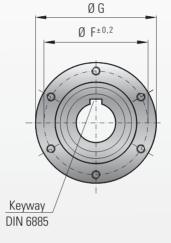
For the maximum permissible radial load capacity for all SKN models, see installation instructions on page 22/23

MODEL SKN			15	30	60	150	200	300	500	800	1500
Adjustment range available from - to (approx. values)	(Nm)	T _{KN}	5-10 or 8-20	10-25 or 20-40	10-30 or 25-80	20-70 45-150 80-180	30-90 60-160 120-240	100-200 150-240 200-320	80-200 200-350 300-500	400-650 500-800 600-850	600-800 700-1200 1000-1800
Adjustment range available from - to (approx. v ("F" Version)	alues) (Nm)	T _{KN}	7-15	8-20 or 16-30	10-30 20-40 30-60	20-60 40-80 80-150	80-140 or 130-200	120-180 or 160-300	50-150 100-300 250-500	200-400 or 450-800	1000-1250 or 1250-1500
Overall length	(mm)	А	47	59	65	71	80	84	101	115	145
Overall length ("F" Version)	(mm)	A ^F	47	59	65	73	83	87	107	126	160
Actuation ring Ø	(mm)	В	55	65	73	92	99	120	135	152	174
Actuation ring Ø ("F" Version) (mm)	B ^F	62	70	83	98	117	132	155	177	187
Clamping fit length	(mm)	С	13.5	16	20	23	26	26	30	35	46
Inside diameter from Ø to Ø H7	(mm)	D	12-22	14-25.4	16-32	19-40	24-44	30-56	35-60	40-62	50-72
Inside diameter from Ø to Ø H7 with keyway	(mm)	D	8-19	12-22	12-30	15-36	20-44	25-50	25-58	30-56	35-65
Pilot diameter h7	(mm)	Е	40	47	55	68	75	82	90	100	125
Bolt-hole circle diameter ± 0.	2 (mm)	F	47	54	63	78	85	98	110	120	148
Flange outside diameter -0.2	(mm)	G	53	63	72	87	98	112	128	140	165
Thread		Н	6xM4	6xM5	6xM5	6xM6	6xM6	6xM8	6xM8	6xM10	6xM12
Thread depth	(mm)	1	6	8	9	10	10	10	12	15	16
Centering length -0.2	(mm)	J	3	5	5	5	5	6	9	10	13.5
Distance	(mm)	K	8	11	11	12	12	15	21	19	25
Distance	(mm)	L	27	35	37	39	44	47	59	67	82
Distance ("F" Version)	(mm)	LF	27	37	39	41.5	47	51.5	62	75	94
Distance		М	6.5	7.5	9.5	11	13	13	14.5	18	22.5
Screw ISO 4762		N	M5	M6	M8	M10	M12	M12	M14	M16	M20
Tightening torque	(Nm)	IN	8	15	40	70	120	130	210	270	500
Clamp ring Ø	(mm)	0	49	55	67	85	94	110	121	134	157
Diameter	(mm)	01	35	42	49	62	67	75	84	91	112
Diameter h7	(mm)	02	27	36	39	50	55	65	72	75	92
Distance between centers	(mm)	Р	17.5	19	23.5	30	32.5	39	43.5	45	52
Distance	(mm)	R	2.5	2.5	2.5	2.5	3	3	4	4	4.5
Moment of inertia	(10 ⁻³ kgm ²)	J_{ges}	0.15	0.25	0.50	1.60	2.70	5.20	8.60	20	31.5
Approx. weight	(kg)		0.4	0.7	1.0	1.3	2.0	3.0	4.0	5.5	10
Actuation path	(mm)		1.5	1.5	1.7	1.9	2.2	2.2	2.2	2.2	3.0

 A^F , B^F , L^F = Full disengagement version

MODEL SKP





BACKLASH FREE TORQUE LIMITER

Miniature series 1.5 - 10

With pure keyway connection

With pure keyway connection

Material:

High-strength, hardened steel

Design:

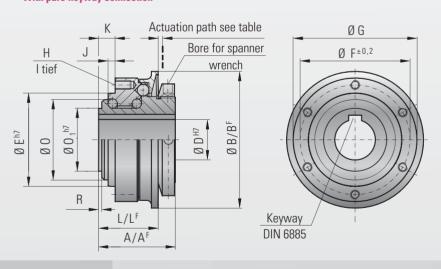
Pure keyway connection
Torque limiting element is backlash free

Temperature range:

-30 to +120° C

Service life:

Maintenance free when operated within the technical specifications

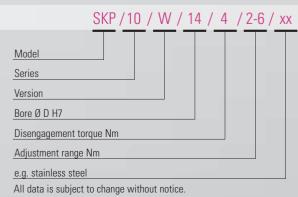

Fit tolerance:

Tolerance between hub and shaft 0.01 - 0.05 mm

Optional sealed version for food-grade applications (see page 26)

Series 15 - 2500

With pure keyway connection



Optional ATEX

Certified under the ATEX 95a directive for the hazardous zones 1/21 and 2/22

Ordering specifications

Possible versions

W = Single-position engagement (standard)

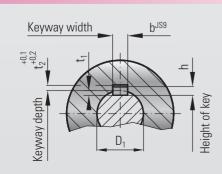
D = Multi-position engagement

G = Load holding

= Full disengagement

For the maximum permissible radial load capacity for all SKP models, see installation instructions on page 22/23

				Miniatur	e Design											
MODEL SKP										Seri	es					
MIODEL SKI			1.5	2	4.5	10	15	30	60	150	200	300	500	800	1500	2500
Adjustment range available from - to (approx. values)	(Nm)	T _{KN}	0.1-0.6 0.4-1 0.8-2	0.2-1.5 0.5-2.2 1.5-3.5	1-3 2-4.5 3-7	2-6 4-12 7-18	5-15 12-25 20-40 35-70	5-20 10-30 20-60 50-100	10-30 25-80 50-115	20-70 45-150 80-225	30-90 60-160 140-280 250-400	100-200 150-240 220-440	80-200 200-350 320-650	400-650 500-800 650-950	600-800 700-1200 1000-1800	1500-2000 2000-2500 2300-2800
Adjustment range available from - to (approx. valu ("F" Version)	ues) (Nm)	T _{KN}	0.3-0.8 or 0.6-1.3	0.5-2	2.5-4.5	2-5 4-10 8-15	7-15	8-20 or 16-30	10-30 20-40 30-60	20-60 40-80 80-150	80-140 or 130-200	120-180 160-300 300-450	50-150 100-300 250-500	200-400 or 450-850	1000-1250 or 1250-1500	1400-2200 or 1800-2700
Overall length A	(mm)	А	15.5	20	22	28	34	43	46	48.5	54	57	71.5	80	93	135
Overall length A ("F" Version)	(mm)	A ^F	15.5	20	22	28	34	43	46	48.5	57	60	75	91	110	141
Actuation ring Ø	(mm)	В	23	29	35	45	55	65	73	92	99	120	135	152	174	242
Actuation ring Ø, ("F" Version)	(mm)	B ^F	24	32	42	51.5	62	70	83	98	117	132	155	177	187	258
Inside diameter from Ø to Ø H7	(mm)	D	4-8	4-10	5-12*	6-16	8-19	12-25.4	12-28	15-38	20-44	25-50	25-58	30-60	35-73	50-95
Pilot diameter h7	(mm)	Е	14	22	25	34	40	47	55	68	75	82	90	100	125	168
Bolt-hole circle diameter ± 0.2	(mm)	F	22	28	35	43	47	54	63	78	85	98	110	120	148	202
Flange outside diameter -0.2	(mm)	G	26	32	40	50	53	63	72	87	98	112	128	140	165	240
Thread		Н	4xM2	4xM2.5	6xM2.5	6xM3	6xM4	6xM5	6xM5	6xM6	6xM6	6xM8	6xM8	6xM10	6xM12	6xM16
Thread depth	(mm)		3	4	4	5	6	8	9	10	10	10	12	15	16	24
Centering length -0.2	(mm)	J	2.5	3.5	5	8	3	5	5	5	5	6	9	10	13.5	20
Distance	(mm)	K	5	6	8	11	8	11	11	12	12	15	21	19	25	34
Distance	(mm)	L	11	15	17	22	27	35	37	39	44	47	59	67	82	112
Distance ("F" Version)	(mm)	LF	11.5	16	18	24	27	37	39	41.5	47	51.5	62	75	94	120
Diameter	(mm)	0	13	18	21	30	35	42	49	62	67	75	84	91	112	154
Diameter h7	(mm)	01	11	14	17	24	27	32	39	50	55	65	72	75	92	128
Distance	(mm)	R	1	1.3	1.5	1.5	2.5	2.5	2.5	2.5	3	3	4	4	4.5	6
Moment of inertia (1	0 ⁻³ kgm²)	J_{ges}	0.01	0.02	0.05	0.07	0.15	0.25	0.50	1.60	2.70	5.20	8.60	20	31.5	210
Approx. weight	(kg)		0.03	0.065	0.12	0.22	0.4	0.7	1.0	1.3	2.0	3.0	4.0	5.5	10	28
Actuation path	(mm)		0.7	0.8	8.0	1.2	1.5	1.5	1.7	1.9	2.2	2.2	2.2	2.2	3.0	3.0

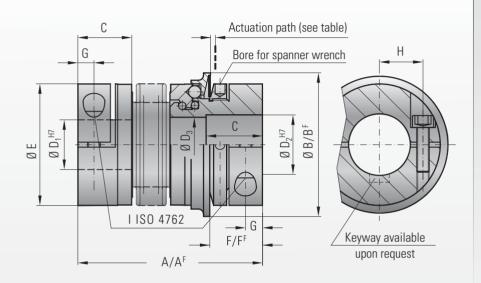

 A^F , B^F , L^F = Full disengagement version

 * Ø 12 with shallow keyway; depth (t2) 1.2 $^{+0.2}$

Keyway according to the DIN 6885 Standard

D ₁	from to	6	8 10	10 12	12 17	17 22	22 30	30 38	38 44	44 50	50 58	58 65	65 75	75 85	85 95	95 110
b JS9		2	3	4	5	6	8	10	12	14	16	18	20	22	25	28
h		2	3	4	5	6	7	8	8	9	10	11	12	14	14	16
t ₁		1.2	1.8	2.5	3	3.5	4	5	5	5.5	6	7	7.5	9	9	10
t ₂ +0,	1 / +0,2	1	1.4	1.8	2.3	2.8	3.3	3.3	3.3	3.8	4.3	4.4	4.9	5.4	5.4	6.4

Imperial dimension keyways also available.


MODEL SK2

والله إن

with clamping hub

BACKLASH FREE TORQUE LIMITER

Material:

Bellows made of highly elastic stainless steel Torque limiter section: High strength hardened steel. Hub material: up to size 80, aluminum; size 150 and up, steel

Design:

With clamping hub and 1 radial screw ISO 4762 Absolutely backlash free through frictional clamping connection

Temperature range: -30° C to +100° C

Service life:

Maintenance free when operated within the technical specifications

Fit tolerance:

Tolerance between hub and shaft 0.01 – 0.05 mm

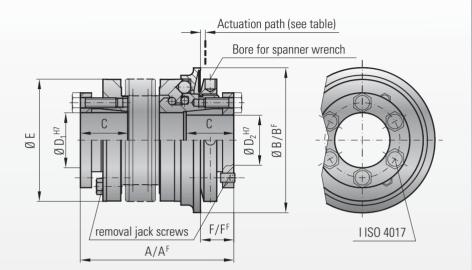
Ordering specifications: see page 15

Optional sealed version for food-grade applications (see page 26)

Optional ATEX Certification (see page 19)

Marial CV 2													S	e	ries										
Model SK 2			1.5	2	4.	.5	10)	1	5	3	0	60		80	15	50	20	00	30	00	50	00	800	1500
Adjustment range available from - to (approx. values)	(Nm)	T _{KN}	0.1-0.6 0.4-1 0.8-1.5	0.2-1.5 or 0.5-2	l	-3 or -6	2- 0 4-1		5- <i>°</i> 0 8-2	r	10- 0 20-	r	10-30 or 25-80		20-70 or 30-90		-70 150 180		-90 160 -240		-200 -240 -320	80- 200- 300-	-350	400-650 500-800 650-850	650-800 700-1200 1000-1800
Adjustment range available from - to (approx. valu ("F" Version)	ues) (Nm)	T _{KN}	0.3-0.8 or 0.6-1.3	0.5-2	2.5	-4.5	2- 0 5-1		7-'	15	8-2 0 16-	r	20-40 or 30-60		20-60 or 40-80		-60 -80 150	0	140 or -200	C	-180 or -300	60- 100- 250-	-300	or	1000-1250 or 1250-1500
Overall length	(mm)	А	42	46 51	57	65	65	74	75	82	87	95	102 1	12	115 127	116	128	128	140	139	153	163	177	190	223
Overall length, ("F" Version)	(mm)	A ^F	42	46 51	57	65	65	74	75	82	87	95	102 1	12	117 129	118	130	131	143	142	156	167	181	201	232
Actuation ring Ø	(mm)		23	29	3	5	45	0	5	5	6	5	73		92	9	12	9	19	12	20	13	35	152	174
Actuation ring Ø (full disengagement)	(mm)	B ^F	24	32	4	2	51	5	6	2	7	0	83		98	9	18	1	17	13	32	15	55	177	187
Fit length	(mm)	С	11	13	1	6	16	3	2:	2	2	7	31		35	3	15	4	10	4	2	5	1	48	67
Inside diameter from Ø to Ø H7	(mm)	D ₁ /D ₂	3-9	4-12	5-	14	6-2	0.	10-	-26	12-	-30	15-32	2	19-42	19	-42	24	-45	30-	-60	35	-60	40-75	50-80
Diameter	(mm)	D_3	9.1	12.1	14	1.1	20	.1	21	.1	24	.1	32.1		36.1	36	6.1	42	2.1	58	3.1	60).1	60.1	68.1
Outside diameter of coupling	(mm)	Е	19	25	3	2	40)	4	9	5	5	66		81	8	11	9	10	11	10	12	23	134	157
Distance	(mm)	F	12	13	1	5	17	7	1	9	2	4	28		31	3	1	3	15	3	5	4	5	50	63
Distance ("F" Version)	(mm)	F ^F	11.5	12	1	4	16	3	1	9	2	2	29		31	3	0	3	13	3	5	4	3	54	61
Distance	(mm)	G	3.5	4	Ĺ	5	5		6.	5	7.	.5	9.5		11	1	1	12	2.5	1	3	1	7	18	22.5
Distance between centers	(mm)	Н	6	8	1	0	15	5	1	7	1	9	23		27	2	.7	3	1	3	9	4	1	2x48	2x55
ISO 4762 screws			M2.5	M3	N	14	М	4	M	15	M	16	M8		M10	М	10	М	12	М	12	М	16	2xM16	2xM20
Tightening torque	(Nm)	'	1	2	4	4	4.	5	8	3	1	5	40		50	7	0	12	20	13	30	20	00	250	470
Approx. weight	(kg)		0.035	0.07	0.	.2	0.	3	0.	4	0.	.6	1.0		2.0	2	.4	4	.0	5	.9	9	.6	14	21
Moment of inertia (10-	3 kgm²)	J_{ges}	0.01	0.01 0.01	0.02	0.02	0.06	0.07	0.10	0.15	0.27	0.32	0.75 0.	80	1.80 1.90	2.50	2.80	5.10	5.30	11.5	11.8	22.8	23.0	42.0	83.0
Torsional stiffness (10 ³ N	m/rad)	C_T	0.7	1.2 1.3	7	5	9	8	20	15	39	28	76 5	5	129 85	175	110	191	140	420	350	510	500	780	1304
Lateral	± (mm)	max.	0.15	0.15 0.20	0.20	0.25	0.20	0.30	0.15	0.20	0.20	0.25	0.20 0.	25	0.20 0.25	0.20	0.25	0.25	0.30	0.25	0.30	0.30	0.35	0.35	0.35
Angular ± (de	egrees)	values	1	1 1.5	1.5	2	1.5	2	1	1.5	1	1.5	1 1	.5	1 1.5	1	1.5	1.5	2	1.5	2	2	2.5	2.5	2.5
Lateral spring stiffness (I	N/mm)		70	40 30	290	45	280	145	475	137	900	270	1200 4	20	920 255	1550	435	2040	610	3750	1050	2500	840	2000	3600
Actuation path	(mm)		0.7	0.8	0	.8	1.	2	1.	5	1.	.5	1.7		1.9	1	.9	2	.2	2	.2	2	.2	2.2	3

Optional:


single-position multi-position load holding full disengagement

MODEL SK3

with tapered conical connection

BACKLASH FREE TORQUE LIMITER

Material:

Bellows made of highly elastic stainless steel Torque limiter section: High strength hardened steel. Hub material: Steel

Design:

With tapered conical clamp and removal jack screws

Absolutely backlash free through frictional clamping connection

Temperature range: $-30 \text{ to } +100^{\circ} \text{ C}$

Service life:

Maintenance free when operated within the technical specifications

Fit tolerance:

Tolerance between hub and shaft 0.01 - 0.05 mm

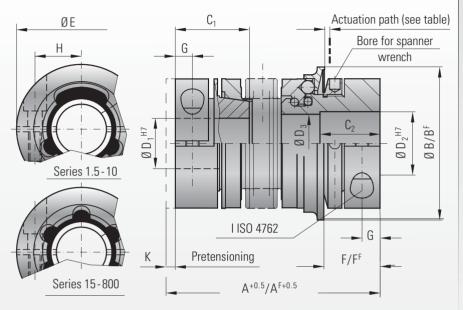
Ordering specifications: see page 15

Optional sealed version for food-grade applications (see page 26)

Optional ATEX Certification (see page 19)

NA 1 1 0 1/ 0												Sei	ies						
Model SK 3			1	5	3	0	6	0	1!	50	20	00	30	00	50	00	800	1500	2500
Adjustment range available from (approx. values)	(Nm)	T _{KN}	5- c 8-	r	C	-25 or -40	C	-30 or -80	20- 45- 80-		60-	-90 160 -280	100- 150- 220-	-240	80- 200- 300-	-350	400-650 500-800 600-900	650-850 700-1200 1000-1800	1500-2000 2000-2500 2300-2800
Adjustment range available from (approx. values) ("F" Version)	(Nm)	T _{KN}	7-	15	C	20 or -30		-40 or -60	20- 40- 80-		0	140 or -200	120- c 160-	r	60- 100- 250-	-300	200-400 or 450-800	1000-1250 or 1250-1500	1400-2200 or 1800-2700
Overall length	(mm)	А	62	69	72	80	84	94	93	105	99	111	114	128	123	136	151	175	246
Overall length ("F" Version)	(mm)	A ^F	62	69	72	80	84	94	93	105	102	114	117	131	127	140	151	184	252
Actuation ring Ø	(mm)	В	5	5	6	35	7	3	9	2	9	9	12	20	10	35	152	174	243
Actuation ring Ø ("F" Version)	(mm)	B ^F	6	62		'0	8	3	9	8	1	17	13	32	15	55	177	187	258
Fit length	(mm)	С	1	19		22	2	.7	3	2	3	2	4	1	4	1	49	61	80
Inside diameter from Ø to Ø H7	(mm)	D ₁ /D ₂	10-	19		-23	12	-29	15	-37	20	-44	25	-56	25	-60	30-60	35-70	50-100
Outside diameter of coupling	(mm)	Е	4	9	5	55	6	6	8	1	9	0	11	10	12	23	133	157	200
Distance	(mm)		1	3	1	6	1	8	1	9	1	9	2	3	2	5	31	30	34
Distance ("F" Version)	(mm)	FF	1	3	1	4	1	7	1	8	1	7	2	0	2	2	20	26	31
6x ISO 4017			N	14	Ν	15	Ν	15	N	16	Ν	16	N	18	Ν	18	M10	M12	M16
Tightening torque	(Nm)		4	1		6		3	1	2	1	4	1	8	2	5	40	70	120
Approx. weight	(kg)		0	.3	0	.4	1	.2	2	.3	3	.0	5	.0	6	.5	9.0	16.3	35
Moment of inertia	(10 ⁻³ kgm ²)	J_{ges}	0.10	0.15	0.28	0.30	0.75	0.80	1.90	2.00	2.80	3.00	5.50	6.00	11.0	12.8	20	42	257
Torsional stiffness	(10 ³ Nm/rad)	C _T	20	15	39	28	76	55	175	110	191	140	420	350	510	500	780	1304	3400
Lateral	± (mm)	max.	0.15	0.20	0.20	0.25	0.20	0.25	0.20	0.25	0.25	0.30	0.25	0.30	0.30	0.35	0.35	0.35	0.35
Angular	± (degrees)	values	1	1.5	1	1.5	1	1.5	1	1.5	1.5	2	1.5	2	2	2.5	2.5	2.5	2.5
Lateral spring stiffness	(N/mm)		475	137	900	270	1200	380	1550	435	2040	610	3750	1050	2500	840	2000	3600	6070
Actuation path	(mm)		1	.5	1	.5	1	.7	1	.9	2	.2	2	.2	2	.2	2.2	3	3

AF, BF, FF = Full disengagement version


(smaller sizes upon request)

MODEL SK5

BACKLASH FREE TORQUE LIMITER

blind-mate version, with clamping hub

Material:

Bellows: stainless steel

Torque limiting portion: high-strength, hardened steel. Hub material: up to size 80, aluminum; size 150 and up, steel

Design:

With clamping hub and 1 radial screw ISO 4762 Absolutely backlash free through frictional clamping connection

Temperature range: $-30 \text{ to } +100^{\circ} \text{ C}$

Service life:

Maintenance free when operated within the technical specifications

Fit tolerance:

Tolerance between hub and shaft 0.01 - 0.05 mm

Ordering specifications: see page 15
Optional sealed version for food-grade

applications (see page 26)

Optional ATEX Certification (see page 19)

MODELCVE												Se	ries										
MODEL SK 5		1.5	2	2	4.	5	1	0	1	5	3	0	6	0	8	0	15	50	300)	50	00	800
Adjustment range available from - to (approx. values) (Nm)	T _{KN}	0.1-0.6 0.4-1 0.8-1.5	0.2- 0 0.5	r	1- 0 3-		2- 0 4-	r	5- 0 8-:	r	10- o 20-	r	10- 0 25-	r	20- 0 30-	r	0	-70 or 150	100-2 150-2 200-3	40	80-2 200- 300-	350	400-650 500-800 650-850
Adjustment range available from - to (approx. values) ("F" Version) (Nm)	T _{KN}	0.3-0.8 or 0.6-1.3	0.5	i-2	2.5	4.5	2- 0 5-	r	7-	15	8-2 0 16-	r	20- 0 30-	r	20- 0 40-	r	80-	150	120-2 or 160-3		60-1 100- 250-	300	200-400 or 450-800
Overall length +0.5 inserted (mm)	Α	44	48	54	60	68	70	79	76	83	89	97	105	115	115	127	116	128	143	157	166	180	196
Overall length +0.5 inserted ("F" Version) (mm)	A ^F	44	48	54	60	68	70	79	76	83	89	97	105	115	117	129	118	130	146	160	170	184	207
Actuation ring Ø (mm)	В	23	2	9	3	5	4	5	5	5	6	5	7.	3	9	2	9	2	120		13	15	152
Actuation ring Ø ("F" Version) (mm)	B ^F	24	3		4	2	51	.5	6		71		8		9		9	8	132		15	_	177
Clamping fit length C_1/C_2 (mm)	C ₁ /C ₂	14 11	16	13	19	16	21	16	28	22	33	27	39	31	43	35	43	35	52	12	61	52	74 48
Bore Diameter from Ø to Ø H7 (mm)	D ₁	3-8	4-	12	5-	16	5-	20	8-	22	10-	25	12-	32	14-	38	14-	-38	30-5	6	35-	60	40-62
Bore Diameter from Ø to Ø H7 (mm)	D ₂	3-8	4-	12	5-	14	5-	20	8-	26	10-	30	12-	32	14-	42	14-	-42	30-6		35-	60	40-75
Diameter (mm)	D ₃	9.1	12		14		20		21		24		32		36		36		58.1		60	-	60.1
Outside diameter (mm)	E	19	2		3		4		4		5		6		8		8		110		12		134
Distance (mm)	F	12	1:	3	1	5	1	7	1	9	2	4	2	8	3	1	3	1	35		4	5	50
Distance ("F" Version) (mm)	FF	11.5	1:	2	1	4	1	6	1	9	2:	2	2	9	3	1	3	0	36		4:	3	54
Distance (mm)	G	3.5	4	-	į	Ď	į	5	6	.5	7.	5	9.	5	1	1	1	1	13		1	7	18
Distance between centers (mm)	Н	6	8	}	1	0	1	5	1	7	1	9	2	3	2	7	2	7	39		4	1	2x48
ISO 4762 screws		M2.5	N		N	14	N	14	N	15	M	6	N	18	M	10	М	10	M12	2	M	16	2xM16
Tightening torque (Nm)		1	2	2	4	ļ	4.	.5	8	3	1	5	4	0	5	0	7	0	130		20	10	250
Pretensioning, approx. (mm)	К	0.1 - 0.5	0.2 -	0.7	0.2	0.7	0.2	1.0	0.2	- 1.0	0.5 -	1.0	0.5 -	1.0	0.5 -	1.0	0.5	- 1.0	0.5 - 1	.5	0.5 -	2.0	0.5 - 2.0
Axial recovery of coupling max. (N)		4	8	5	15	10	25	30	20	12	50	30	70	45	48	32	82	52	157	106	140	96	200
Approx. weight (kg)		0.038	0.0	07	0.	2	0.	.3	0.	.4	0.	6	1.	4	2		2	.4	5.9		9.	6	15
Moment of inertia (10 ⁻³ kgm ²)	$J_{\rm ges}$	0.01	0.01	0.01	0.02	0.02	0.06	0.07	0.10	0.15	0.27	0.32	0.75	0.80	1.80	1.90	2.50	2.80	6.50	7.00	13.0	17.0	50
Torsional stiffness (10 ³ Nm/rad)	C _T	0.7	1.2	1.3	7	5	8	7	12	10	18	16	40	31	68	45	90	60	220	190	260	250	390
Lateral + (mm)	max.	0.15	0.15	0.20	0.20	0.25	0.20	0.30	0.15	0.20	0.20	0.25	0.20	0.25	0.20	0.25	0.20	0.25	0.25	0.30	0.30	0.35	0.35
Angular ± (degrees)	values	1	1	1.5	1.5	2	1.5	2	1	1.5	1	1.5	1	1.5	1	1.5	1	1.5	1.5	2	2	2.5	2.5
Lateral spring stiffness (N/mm)		70	40	30	290	45	280	145	475	137	900	270	1200	420	920	290	1550	435	3750 1	050	2500	840	2000
Actuation path (mm)		0.7	0.	8	0.	8	1.	.2	1.	.5	1.	5	1.	7	1.	9	1.	.9	2.2		2.	2	2.2

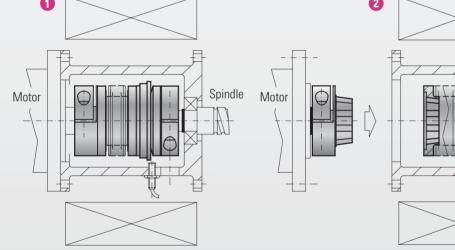
blind-mate version, with clamping hub

bidirectional preload A A A A A A

Design details

Six self-centering, tapered drive projections (2) have been formed into the tapered segment, which has been molded onto an aluminium hub (1).

The six projections are configured conically in a longitudinal direction (3).


The mating-piece consists of a metal bellows with a tapered female element (4).

Absolutely backlash-free torque transmission is ensured due to the axial pretensioning (5) of the metal bellows during mounting. This slight pretensioning has no negative influence on the operation of the metal bellows or on the shaft bearing.

Possible applications for backlash-free, press-fit torque limiter SK 5

- Applications with limited accessibility. The dismounting of a single-piece coupling is too labor intensive.
- 2 The press fit design allows the motor or gearbox unit to be removed by simply pulling it out when servicing is required.

Dismounting the coupling is possible **without loosening** the hub fastening screws. Therefore, clamping screw access holes are not required.

Ordering specifications

Required information for models SK 2, SK 3 and SK 5

SK2 / 60 / 102 / D / 16 / 19 / 25/10-30/XX Model Series Overall length mm Version Bore Ø D1 H7 Bore Ø D2 H7 Disengagement torque Nm Adjustment range Nm e.g. stainless steel All data is subject to change without notice.

Possible versions

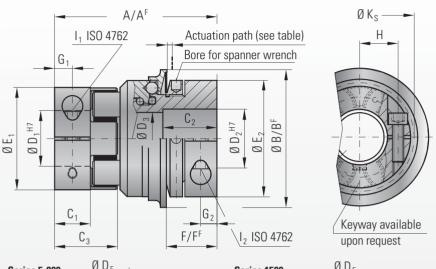
W = Single-position engagement (standard)

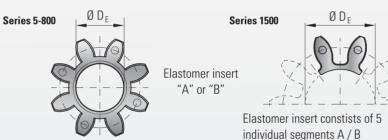
D = Multi-position engagement

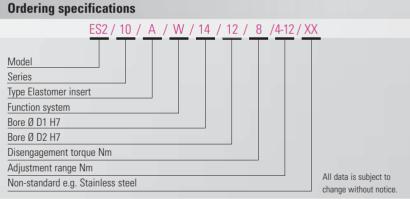
i = Load holding

F = Full disengagement

Spindle






MODEL ES2

BACKLASH FREE TORQUE LIMITER

with clamping hubs

Material:

Torque limiting portion: high-strength, hardened steel with rust protection (nitro-carburized)

- a. Clamping hub D1: up to size 450, high strength aluminum; size 800 and up, steel
- b. Clamping hub D2: up to size 60, high strength aluminum; size 150 and up, steel

Design:

Two coupling hubs concentrically machined with concave driving jaws

One side with an integrated torque limiter Available in single-position, multi-position, load holding, and full disengagement versions.

Temperature range:

See table below

Fit tolerance:

Tolerance between hub and shaft 0.01 − 0.05 mm

Optional sealed version for food-grade applications (see page 26)

Optional ATEX Certification (see page 19)

Possible versions

W = Single-position re-engagement (standard)

D = Multi-position re-engagement

G = Load holding

F = Full disengagement

Specification of the Elastomer inserts

Туре	Shore hardness	Color	Material	Relative damping (ψ)	Temperature range	Features
А	98 Sh A	red	TPU	0.4 - 0.5	-30°C to +100°C	high damping
В	64 Sh D	green	TPU	0.3 - 0.45	-30°C to +120°C	high torsional stiffness
D	65 Sh D	black	TPU	0.3 - 0.45	-10°C to + 70°C	electrically conductive

Relative damping values were determined at 10 Hz and +20°C.

Model EC									Ser	ries								
Model ES		5	1	0	2	0	6	0	15	50	30	00	45	50	80	00	15	00
Elastomer type	А	В	А	В	Α	В	А	В	Α	В	А	В	А	В	А	В	А	В
Static torsional stiffness (Nm/rad) C _T	150	350	260	600	1140	2500	3290	9750	4970	10600	12400	18000	15100	27000	41300	66080	87600	109000
Dynamic torsional stiffness (Nm/rad) C _{Td}	300	700	541	1650	2540	4440	7940	11900	13400	29300	23700	40400	55400	81200	82600	180150	175000	216000
lateral ± (mm)	0.08	0.06	0.1	0.08	0.1	0.08	0.12	0.1	0.15	0.12	0.18	0.14	0.2	0.18	0.25	0.2	0.5	0.3
angular ± (degrees) Valu	1	0.8	1	0.8	1	0.8	1	0.8	1	0.8	1	0.8	1	0.8	1	0.8	1.5	1
axial (mm)	±	:1	±	1	±	2	±	2	±	2	±	2	±	2	±	2	±	3

MODEL ES2

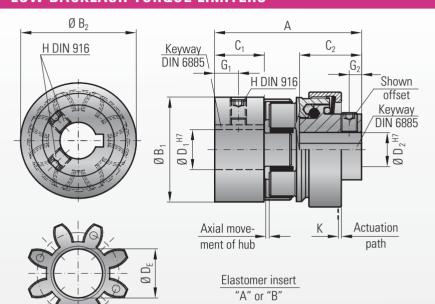
BACKLASH FREE TORQUE LIMITER

MODEL EC 2										Sei	ies								
MODEL ES 2		Ę	j	1	0	2	0	E	60	1!	50	30	00	4	50	80	00	15	00
Type (Elastomer insert)		Α	В	Α	В	Α	В	Α	В	А	В	Α	В	Α	В	А	В	Α	В
Rated torque (Nm)	T _{KN}	9	12	12.5	16	17	21	60	75	160	200	325	405	530	660	950	1100	1950	2450
Max. torque* (Nm)	T_{Kmax}	18	24	25	32	34	42	120	150	320	400	650	810	1060	1350	1900	2150	3900	4900
Adjustment range possible from -to (Nm)	T _{KN}	1- 0	r	2 - 0	r		r		- 30 or	20 - 45 -	150	100 - 150 -	240	200	- 200 - 350		- 800		1200
,		3-	-6	4 - 2 -		20 -			- 80 - 40	80 - 20 -		200 - 120 -			- 500 - 150		- 900 - 400	1000 - 1000 -	
Adjustment range ("F" Version) (Nm) possible from -to	T _{KN} ^F	2.5 -	4.5	0 5 -	r	0			- 40 or - 60	40 - 80 -	- 80		r	100	- 300 - 500		- 400 or - 800		ır
Overall length (mm)	А	5	0	6	0	8	6	Ç	96	10	06	14	10	1	64	1	79	24	45
Overall length ("F" Version) (mm)	A _F	5	0	6	0	8	6	O,	96	10	08	14	13	1	68	19	90	25	57
Outside diameter of actuation ring (mm)	В	3	5	4	5	6	5	7	73	9	2	12	20	1	35	1!	52	17	74
Outside diameter of actuation ring ("F" Version) (mm)	B _F	4:	2	51	.5	7	0	8	33	9	8	13	32	1	55	1	77	18	37
Clamping fit length (mm)	C ₁	8	3	10	.3	1	7	2	20	2	1	3	1	3	34	4	6	8	8
Fit length (mm)	C ₂	1-	4	1	6	2	7	3	31	3	5	4	2		51	4	5	8	6
Length of hub (mm)	C ₃	16	.7	20	.7	3	1	3	36	3	9	5	2	5	57	7	4	12	20
Inside diameter from Ø to Ø H7 (mm)	D ₁	4 - 1	12.7	5 -	16	8 -	- 25	12	- 32	19	- 36	20 -	45	28	- 60	35	- 80	35 -	- 90
Inside diameter from Ø to Ø H7 (mm)	D ₂	6 -	14	6 -	20	12 -	- 30	15	- 32	19	- 42	30 -	- 60	35	- 60	40	- 75	50 -	- 80
Diameter (mm)	D_3	14	.1	20	.1	24	l.1	3:	2.1	36	i.1	58	1.1	60	0.1	60).1	68	3.1
Inside diameter (Elastomer insert) (mm)	D _E	10	1.2	14	.2	19	3.2	2	6.2	29	1.2	36	i.2	46	6.2	60).5	7	9
Diameter of the hub (mm)	E ₁	2	5	3	2	4	2	į	56	66	i.5	8	2	1	02	13	6.5	16	60
Diameter of the hub (mm)	E ₂	1	9	4	0	5	5	6	66	8	1	11	10	1:	23	1:	32	15	57
Distance (mm)	F	1	5	1	7	2	4	2	28	3	1	3	5	4	15	5	0	6	3
Distance ("F" Version) (mm)	F _F	1-	4	1	6	2	2	2	29	3	0	3	5	۷	13	5	4	6	1
Distance (mm)	G ₁	4	1		<u> </u>	8	.5	1	10	1	1	1	5	17	7.5	2	3	3	6
Distance (mm)	G ₂	5	5		5	7	.5	9	3.5	1	1	1	3	1	17	1	8	22	2.5
Distance between centers (mm)	H ₁	8	3	10	.5	1	5	2	21	2	4	2	9	3	38	50).5	2x	57
Screws (ISO 4762)	- I ₁	M	13	M	14	N	15	N	∕ 16	N	18	М	10	M	112	М	16	2x N	Л 16
Tightening torque (Nm)	'1	2	2	4.	5	8	3	1	15	3	5	7	0	1:	20	2	90	30	00
Distance between centers D ₂ side (mm)	H ₂	1	0	1	5	1	9	2	23	2	7	3	9	4	11	4	8	2x	55
Screws (ISO 4762)		M	14	M	14	N	16	Ν	∕ 18	М	10	М	12	M	116	2x l	V116	2x N	Л20
Tightening torque (Nm)		4	1	4.	5	1	5	4	40	7	0	13	30	2	00	2	50	47	70
Diameter with screwhead (mm)	Ks	2	5	3	2	44	1.5	Ę	57	6	8	8	5	1	05	1;	39	15	55
Approx. weight (kg)		0.	2	0.	3	0	.6	1	0.	2	.4	5.	.8	9	1.3	14	1.3	2	6
Moment of inertia (10 ⁻³ kgm ²)	J_{ges}	0.0	02	0.0	06	0.	25	C).7	2	.3	1	1	2	22	33	3.5	18	35
Actuation path (mm)		0.	.8	1.	2	1	.5	1	.7	1	.9	2.	2	2	1.2	2	.2	3.	.0

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 16

A^F, B^F, F^F = Full disengagement version

Maximum transmittable torque (Nm) of clamping hub based on bore diameter (mm)


Series	Ø 4	Ø5	Ø 8	Ø 16	Ø 19	Ø 25	Ø 30	Ø 32	Ø 35	Ø 45	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70	Ø 75	Ø 80	Ø 85	Ø 90
5	1,5	2	8																
10		4	12	32															
20			20	35	45	60													
60				50	80	100	110	120											
150					120	160	180	200	220										
300					200	230	300	350	380	420									
450							420	480	510	600	660	750	850						
800									700	750	800	835	865	900	925	950	1000		
1500									1900	2600	2900	3200	3500	3800	4000	4300	4600	4900	5200

Higher torque values possible through additional keyway

MODEL ESL

LOW BACKLASH TORQUE LIMITERS

with keyway connection

Material:

Torque limiting portion: high-strength steel Clutching balls: hardened steel Clamping hubs: high-strength aluminum Elastomer insert: precision molded, wear-resistant, thermally stable polymer

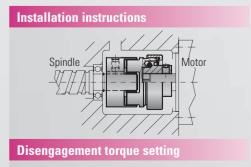
Design:

Zero backlash elastomer coupling with integral torque limiter. All sizes available in standard multi-position design.

Speed:

Negligible abrasion with disengagement speeds up to 200 rpm

Higher speeds available upon request


Fit tolerance:

Tolerance between hub and shaft 0.01 - 0.05 mm

MAODEL ECL							Ser	ies				
MODEL ESL			į.	j	1	0	2	0	6	0	15	50
Type (Elastomer insert)			А	В	А	В	А	В	А	В	А	В
Rated torque	(Nm)	T _{Kn}	9	12	12.5	16	17	21	60	75	160	200
Torque setting possible* fro	m - to (Nm)	T _{Kn}	1-	6	1-	12	3-	19	5-1	60	20-	150
Overall length	(mm)	Α	3	4	4	5	6	4	8	0	9	0
Diameter of the hub	(mm)	B ₁	2	5	3	2	4	2	5	6	66	3.5
Diameter of the hub	(mm)	B ₂	2	9	3	2	4	6	5	9	7	5
Hub fit length				.5	1	2	2	5	3	0	3	5
Hub fit length	b fit length (mm)			.5	2	0	2	2	3	1	3	5
Inside diameter from Ø to Ø H7	side diameter from			15	6-	18	8-:	25	12-	-32	19-	-38
Inside diameter from Ø to Ø H7	(mm)	D ₂	6-	10	6-	12	8-	19	12-	-24	19-	-32
Inside diameter max. (elaste	omer) (mm)	D _E	10	.5	14	1.2	19	.2	26	i.2	29	3.2
Distance	(mm)	G ₁	į	j	(3	ĺ)	1	1	1	2
Distance	(mm)	G_2	2	5	3	.5	4	ļ	4	1	1	4
Screws DIN 916**						depen	ding on bore dia	meter see belo	w table			
Approx. weight			0.)5	0.	15	0.	2	0.	5	1	1
Moment of inertia (10^{-3} kgm^2) $J_1/$			0.	01	0.	02	0.0	08	0.	15	0.	.5
Actuation path (mm) K			0	6	0	.6	0.	7	1.	.1	1.	.4

^{*}Torque setting not adjustable. Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 16

Ordering specifications ESL / 10 / A / 14 / 12 / 10 / XX Model Series Type of elastomer Bore D1 H7 with keyway Disengagement torque Nm (factory set — non-adjustable) Non-standard e.g. Stainless steel

The ESL torque limiter is factory preset at the required disengagement torque and is not adjustable.

** Set screw					
D ₁ /D ₂	1				
- Ø 10	M3				
Ø 11-12	M4				
Ø 13-30	M5				
Ø 31-58	M8				
Ø 59-80	M10				

Bore sizes $< \emptyset$ 6 are manufactured without a keyway

MODEL ATEX

FOR USE IN HAZARDOUS AREAS AND EXPLOSIVE ATMOSPHERE

Atmosphere Explosive

ATEX 95 a is regulated by the new European directive. Generally the explosive atmosphere is classified in 3 different zones.

Zone 0:

A place in which an explosive atmosphere consists out of a mixture of air and flammable substances in the form of gas, vapor or mist, and is present frequently, continuously or for extended periods.

Zone 20:

Is relevant for an explosive atmosphere in the form of clouds of combustible dust in air under the same conditions as above.

70ne 1

Described as a place in which an explosive atmosphere consists of a mixture of air and flammable substances in the form of gas, vapor or mist, and is **likely to occur** in normal operation occasionally.

Zone 21:

Is relevant for an explosive atmosphere in the form of clouds of combustible dust in air under the same conditions as above.

Zone 2:

A place in which an explosive atmosphere consists of a mixture of air with flammable substances in the form of gas, vapor or mist, and is **not likely to occur** in normal operation but, if it does occur, it will persist **for a short period only**.

Zone 22:

Relevant for an explosive atmosphere in the form of a cloud of combustible dust in air under the same conditions as above.

For the classified zones 1/21 and 2/22 the Servomax couplings EK-EEX do have an accreditation according to ATEX 95/a

Design of ATEX torque limiter:

Full disengagement version required for ATEX environments to avoid excess friction subsequent to disengagement.

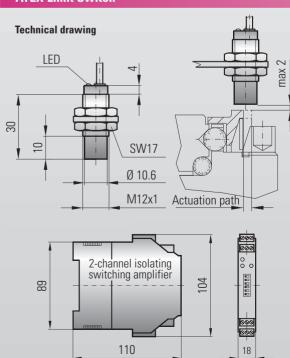
All dimensions and materials are the same as the standard products.

An IP65 rated sealed intermediate flange must be used with all bellows-style torque limiters.

The ES2 style torque limiter comes with an electrically conductive insert (Sh65D). The insert prevents electrostatic charging and sparking.

Rating:

For safety purposes, all misalignment, speed and torque ratings are reduced by 30%. Technical data available upon request.

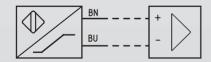

Maintenance:

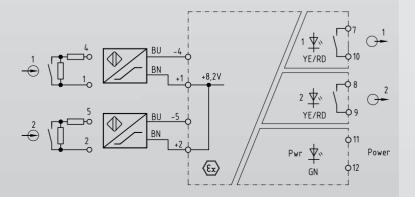
Visually inspect the torque limiter at regular maintenance intervals.

Assembly instructions:

Assembly and maintenance instructions will be provided with each torque limiter.

ATEX Limit Switch

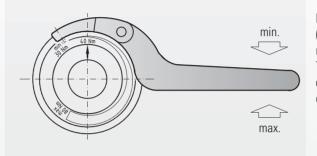

Note:


After installation, it is necessary to fully test the functionality of the limit switch.

Order-No.: EEx. 1624.004

Technical data available upon request

Switch diagram:

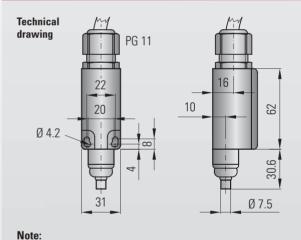


www.rwcouplings.com

ACCESSORIES

BACKLASH FREE TORQUE LIMITER

Spanner wrench for torque adjustment (for DIN 1816 nuts)



Miniature torque limiters (series 1.5-10) do not require a spanner wrench. These adjustment nuts can be turned with a bolt or a drift pin.

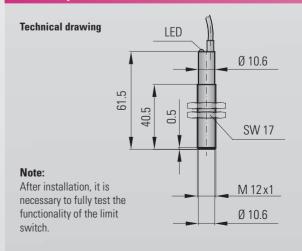
Order-No.: see table

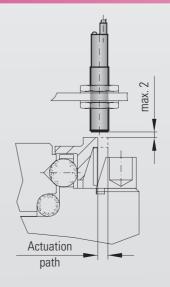
Series ES2	Series SK	• Single-position • Multi-position • Load holding	Full disengagement
Х	15	No. 49/4	No. 49/4
20	30	No. 55/4	No. 55/4
60	60	No. 66/5	No. 66/5
150	80/150	No. 82/5	No. 82/5
Х	200	No. 90/6	No. 98/5
300	300	No. 114/6	No. 114/6
450	500	No. 126/8	No. 126/8
800	800	No. 134/8	No. 144/8
1500	1500	No. 163/8	No. 163/8
Х	2500	No. 210/10	No. 226/10

Mechanical Limit Switch (appropriate from series 30 up)

After installation, it is necessary to fully test the functionality of the limit switch.

approx. 0.1-0.2 Distance


The plunger should be placed as close as possible to the actuation ring of the torque limiter (approx. 0.1-0.2 mm)


Order-No.: 618.6740.644

Technical data				
Max. voltage	500 V AC			
Max. constant current	10 A			
Protective System	IP 65			
Contact system	Opener (forced separating)			
Temperature range	- 30 - +80 °C			
Actuation	Plunger (metal)			
Switch diagram	12			

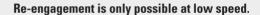
The mechanical limit switch is suitable for series 30 and up. For smaller torque limiters, the proximity sensor is recommended.

Proximity sensor

Order-No.: 650.2703.001

Technical data	
Voltage	10 to 30 V DC
Max output current	200 mA
Max switch frequency	800 Hz
Temperature range	-25°C to +70°C
Protective system	IP 67
Switch type	normally open
Max detection gap	2 mm
Switch diagram	br + Sw A A

GENERAL FUNCTION

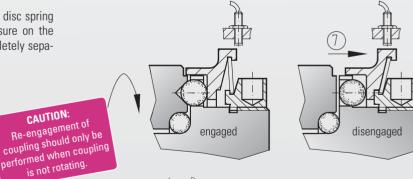

R+W torque limiters are ball detent style overload couplings. They protect drive and driven mechanical components from damage associated with torque overloads.

- Backlash free transmission torque is accomplished by a series of steel balls (4) nested in hardened detents (5).
- Disc springs push (2) against an actuation ring (3) keeping the balls nested.
- The disengagement torque is adjustable by means of an adjustment nut (1).
- In the event of an overload, the actuation ring (3) moves axially allowing the balls to roll out of the detents separating the drive and driven elements.
- The movement of the actuation ring (3) can be sensed by means of a mechanical switch or proximity sensor (6) triggering the drive to shut down.

Single-position / Multi-position / Load holding

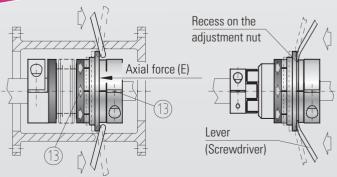
In a torque overload, for the single-position design (standard) and multiposition design, the spring disengages to allow the balls to come out of their detents, separating the drive and driven elements. A very light residual spring pressure remains so that the coupling will re-engage once the torque is reduced below the overload setting.

In the load holding version the drive and driven elements are only allowed limited rotation in order to allow for movement of the actuation ring. (see page 4)



Full disengagement version

With this design, when a torque overload is detected, the disc spring completely flips over and places no residual spring pressure on the actuation ring (7). The drive and driven elements are completely separated.


Coupling will not re-engage automatically. A manual reset is required (Picture 3a, 3b).

Torque limiting portions of SK and ES2 are identical.

The R+W full disengagement torque limiter can be re-engaged in 6 different positions (every 60 degrees) with low axial force (E). Marks on the actuation ring and body (13) will line up to indicate the re-engagement points.

Re-engagement of series 60 and up can be achieved through the use of 2 levers, which are to be supported at a recess on the adjustment nut (picture 3b). Screwdrivers can be used as a lever.

Picture 3a (up to series 60)

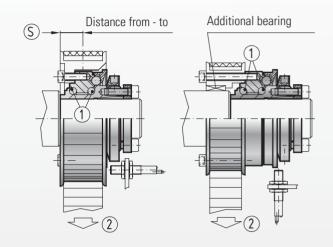
Picture 3b (series 60 and up)

MOUNTING-INSTRUCTIONS

BACKLASH FREE TORQUE LIMITER

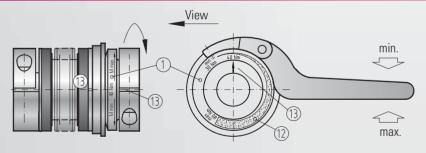
MODEL SK1 / SKN / SKP

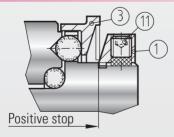
SK1 / SKN / SKP have an integral bearing (1) for support of attached component (pulley, sprocket, etc.)


Please do not exceed the maximum radial force (2) as described in the table

When centering the load over the "S" dimension, additional bearing support is not required.

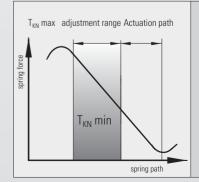
For offset mounting, additional bearing support is required.


This is recommended, for example, if the attached component has a very small diameter or the driven element is very wide.


Depending on the installation situation, ball bearings, needle bearings or bushings may be used.

Series	1.5	2	4.5	10	15	30	60	150	200	300	500	800	1500	2500
Radial load capacity,max (N)	50	100	200	500	1400	1800	2300	3000	3500	4500	5600	8000	12000	20000
(S) from-to (mm)	3-6	5-8	5-11	6-14	7-17	10-24	10-24	12-24	12-26	12-28	16-38	16-42	20-50	28-60

Disengagement torque setting



- (1) adjustment nut
- (12) adjustment range
- (1) fastening screw
- marking
- steel actuation ring

R+W torque limiters are factory set to the customer specified disengagement torque, which is marked onto the coupling. The adjustment range (min/max) is also marked on the adjustment nut (1). The customer can adjust the disengagement torque as long as it falls into the range (12) indicated on the adjustment nut.

Do not exit the adjustment range during setting.

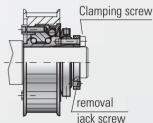
To adjust the disengagement torque, loosen the locking screws (11) and rotate the adjustment nut, using a spanner wrench, to the desired new setting. Tighten the 3 locking screws (11) and test the coupling.

CAUTION:

R+W torque limiters incorporate disc springs that exhibit a special spring characteristic. It is important to stay within the range of the coupling.

MOUNTING AND DISMOUNTING OF TORQUE LIMITERS

Mounting preparation


All mounting surfaces including shafts, bores, keys and keyways, must be clean and free of burrs, nicks and dents. Inspect shaft diameters, coupling bore diameters, key and keyway dimensions and tolerances. All R+W coupling bores are machined to ISO tolerance H7. Clearances between the shaft and hub are recommended to be within 0.01 and 0.05 mm. A light coating of oil is recommended to ease the mounting process and will not affect the clamping force of the hub.

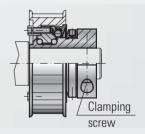
CAUTION:

Do not use sliding grease, or oils or grease with molybdenum disulfide or other high pressure additives.

SK 1 with tapered bushing Series 15 - 2500

Mounting:

Slide the coupling onto the shaft to the proper axial position. Using a torque wrench, uniformly tighten the clamping screws using a cross-wise tightening pattern until all the clamping screws are evenly tightened to the correct tightening torque provided in table (page7). During tightening the coupling may move slightly towards the tapered bushing.

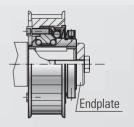

Caution! Further tightening of the clamping screws may destroy the tapered bushing connection.

NOTE: Prior to reassembly make sure that the jack-screws are removed or raised to their original position.

Dismounting:

Loosen the clamping screw. Insert the three jack screws into the tapped holes on the tapered segment. Apply even pressure to remove the tapered bushing. Remove the coupling.

SK 1 / SKN with clamping hub SK 1 Series 1.5 - 10 SKN Series 15-1500


Mounting:

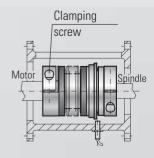
Slide the coupling onto the shaft to the proper axial position. Using a torque wrench tighten the clamp screw to the proper tightening torque. (Page 7/9)

Dismounting:

Simply loosen the clamp screw and remove the coupling.

SKP with keyway Series 1.5 - 2500

Mounting:


Slide the coupling onto the shaft. Lock into position position, with an end plate (8) for example.

Dismounting:

Remove the end plate and slide the coupling off the shaft using an appropriate tool.

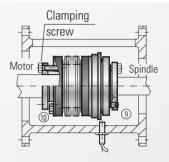
Metal bellows torque limiters

SK 2 with clamping hub

Mounting:

Prior to mounting make sure that the shafts to be connected do not exceed the angular or lateral misalignment limits for the coupling size to be used. This data can be found in the catalog. Slide the coupling onto the first shaft end to the proper axial position. Using a torque wrench, tighten the clamp screw to the correct tightening torque (table page 12). Insert the second shaft into the other end of the coupling to the proper axial position. Make sure that the coupling is free from any axial forces before tightening. Tighten the clamp screw as above using a torque wrench.

Dismounting:

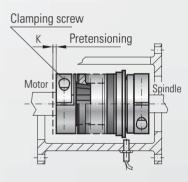

Simply loosen the clamp screw and remove the coupling.

MOUNTING INSTRUCTIONS

MOUNTING AND DISMOUNTING OF TORQUE LIMITERS

SK 3 With tapered conical clamp

Mounting:


Prior to mounting make sure that the shafts to be connected do not exceed the angular or lateral misalignment limits for the coupling size to be used. This data can be found in the catalog. Slide the coupling onto the first shaft to the proper axial position. Using a torque wrench, uniformly tighten the clamping screws using a cross-wise tightening pattern. Apply 1/3, 2/3 and full torque until all the clamping screws are evenly tightened to the correct tightening torque (see page 13).

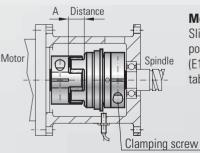
CAUTION: Mounting is completed. Further tightening of the clamp screws may damage the tapered bushing connection.

Dismounting:

Loosen the clamping screws. Use the three jack screws (9) conveniently mounted in the hub to evenly back out the tapered bushing. Remove the coupling.

SK 5 Blind-mate with clamping hubs

Mounting:

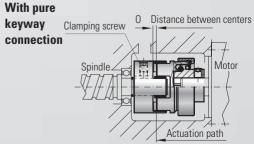

Prior to mounting it is necessary to consider the overal length of the assembled coupling. The press-fit coupling requires a specific pre-tensioning (K) between the two coupling halves to ensure backlash free operation. Mount the "female" coupling segment containing the bellow onto the first shaft end to the proper axial position. Using a torque wrench, tighten the clamp screw to the proper tightening torque. Mount the "male" coupling segment onto the second shaft end. The proper axial position is when the two couplings come together and the coupling is compressed by the proper pre-tension distance (K). See page 14. When the coupling segment is properly positioned, tighten the clamp screw to the proper torque.

Dismounting:

Pull the coupling apart. Simply loosen the clamp screws and remove the coupling from the shaft.

Elastomer torque limiters

ES 2 With clamping hubs


Mounting:

Slide the coupling onto the shaft ends to the proper axial position. Using a torque wrench, tighten the clamp screws (E1/E4) to the correct tightening torque, as indicated (in the table page 17)

Dismounting:

Simply loosen the clamp screw and remove the safety coupling.

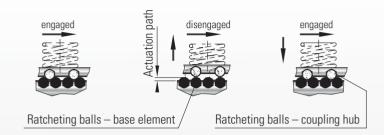
ESL

Mounting:

Slide the torque limiting portion onto the motor shaft. At the correct axial position, tighten the clamping screw (DIN 916). Repeat this step for the coupling hub on the driven shaft.

The minimum distance 0 (see table on page 25) is critical during installation since the torque limiting portion will move axially upon disengagement.

The torque limiter functions according to a ratcheting principle. High-strength, hardened steel ball bearings are alternately engaged next to each other. One indexed position follows another (ratcheting).


Dismounting:

Loosen the set screws and remove the safety coupling.

MOUNTING AND DISMOUNTING OF TORQUE LIMITERS

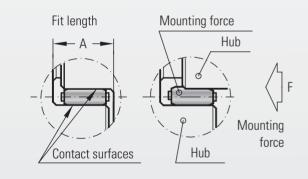
The ESL torque limiter is factory preset at the required disengagement torque and is not adjustable.

Elastomer inserts

The equalizing element of an EK coupling is the elastomer insert. It transmits the torque without backlash or vibration. The elastomer insert defines the features of the entire coupling and/or of the entire drive system. The insert is available available in 3 different options.

Туре	Color	Shore hardness	Material	Temperature range	Features
А	red	98 Sh A	TPU	-30°C - +100°C	high damping
В	green	64 Sh D	TPU	-30°C - +120°C	high torsional stiffness
D	black	65 Sh D	TPU	-10°C - + 70°C	electrically conductive

To achieve zero backlash the coupling hubs must be pressed together with an axial force compressing the elastomer ring. Cleaning the elastomer ring and hubs and applying a light film of oil will aid in the assembly process.


Caution!

Use polyurethane compatible lubricants, such as petroleum jelly.

Series				10	20	60	150	300	450	800
Fit length	mm	А	9	11.5	16	18	20	24	26	31
minimum distance*	mm	0	0.7	1.1	0.7	1.3	1.3	-	-	-

^{*} Only necessary for ESL

Max. misalignment

Angular misalignment Δ Kw Axial misalignment Δ Ka

Lateral misalignment Δ Kr

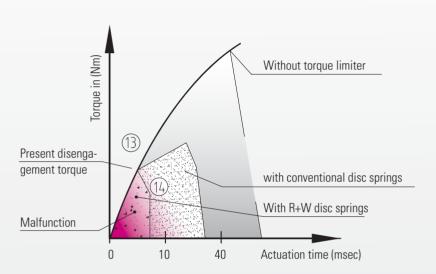
CAUTION:

Exact alignment of the R+W coupling considerably increases the service life of the metal bellows.

Reducing or eliminating lateral misalignment eliminates the radial loading of the adjacent bearings, increasing service life and reducing heat.

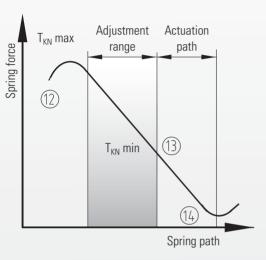
For drives running at high speed it is recommended to align the coupling with a dial indicator or laser alignment system.

Max. misalignment values see table. Axial misalignment between 1-2 mm.



ADDITIONAL INFORMATION

BACKLASH-FREE TORQUE LIMITERS FROM R+W


Behavior and characteristic

Disengagement behavior

Spring characteristic

Digressive spring characteristic

Spring package:

R + W torque limiters function by means of a disc spring with a digressive characteristic developed exclusively for this application (12).

Upon actuation of the coupling, this characteristic (13) brings about an immediate drop in the torque (14) and an interruption of the force flux.

The spring force of the disc spring drops to a lower value after the disengagement process.

This advantage guarantees extremely short actuation times (1-3 ms), low wear and very low residual friction (between 2-5 %).

Speed:

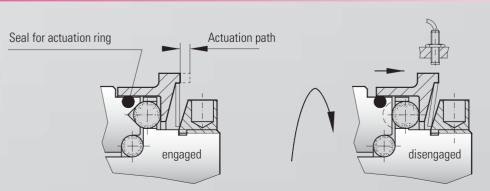
The service life of the coupling is essentially determined by the number of rotations after disengagement.

Wear:

No wear occurs during engaged operating condition. In the event of an overload the drive should be stopped through a mechanical limit switch or proximity switch immediately.

Maintenance:

When properly engaged, the torque limiters are wear free, and therefore require no maintenance. The ball detent mechanism within each coupling is permanently lubricated.


Seal:

Sealing of the torque limiters is available.

Torque Limiter in sealed version (Option)

Advantages of the sealing:

- Protection from dirt and liquid contamination
- Appropriate for food service and light washdown environments
- No escape of grease possible

Prior technical approval is suggested for applications using our products other than specified.

SELECTION

BACKLASH FREE TORQUE LIMITERS FROM R+W

According to disengagement torque

As a rule torque limiters are rated according to the required disengagement torque, which must be greater than the torque that is necessary for regular machine operation.

The disengagement torque of the torque limiters is determined as a rule in accordance with the drive specifications.

The following calcucation has proven itself as a good rule of thumb:

$$T_{KN} \ge 1.5 \cdot T_{AS}$$
 (Nm)

or

$$T_{KN} \ge 9550 \cdot \frac{P_{AN}}{D} \cdot 1.5 \text{ (Nm)}$$

$$T_{KN}$$
 = rated torque of coupling (Nm)

 T_{AS} = peak torque of motor (Nm)

$$T_{KN}$$
 = rated torque of coupling (Nm)

$$P_{AN} = \text{drive power}$$
 (kw)
 $n = \text{speed of drive}$ (rpm)

According to acceleration torque (start-up at no load)

Values for $S_A = 2-3$ are usual for servo drives on machine-tools

S_A = shock or load factor

 $S_A = 1$ (uniform load)

 $S_A = 2$ (non-uniform load)

 $S_A = 3$ (high dynamic load)

$$T_{KN} \ge \alpha \cdot J_L \ge \frac{J_L}{J_A + J_L} \cdot T_{AS} \cdot S_A \text{ (Nm)}$$

 $T_{\text{KN}} = \text{rated torque of coupling}$ (Nm) $\alpha = \text{angular acceleration}$

$$\alpha = \frac{\omega}{t} = \frac{\pi \cdot n}{t \cdot 30}$$

(s)

(Nm)

t = acceleration time

 ω = angular speed in (s-1)

n = speed of drive

ve (rpm) Inertia on load side (kgm ²)

 J_L = moment of inertia on load side

 J_A = moment of inertia on driving side (kgm 2)

 T_{AS} = peak torque of motor

According to acceleration and load torque (start with load)

$$T_{KN} \ge \alpha \cdot J_L + T_{AN} \ge \left\lceil \frac{J_L}{J_A + J_L} \cdot (T_{AS} - T_{AN}) + T_{AN} \right\rceil \cdot S_A \quad (Nm)$$

 $S_{\Delta} =$ shock or load factor

 $S_A = 1$ (uniform load)

 $S_A = 2$ (non-uniform load)

 $S_A = 3$ (high dynamic load)

Values for $S_A = 2-3$ are usual for servo drives on machine-tools

$$T_{KN} = \text{ rated torque of coupling}$$
 (Nm)
 $\alpha = \text{ angular acceleration}$ $\frac{1}{s^2}$

$$\begin{array}{lll} t &=& \text{acceleration time} & \text{(s)} \\ \omega &=& \text{angular speed in} & \text{(s-1)} \\ \text{n} &=& \text{speed of drive} & \text{(rpm)} \end{array}$$

$$J_L$$
 = moment of inertia on load side (kgm²)

$$T_{AN}$$
 = load torque (Nm)

$$J_A$$
 = moment of inertia on driving side (kgm 2)

$$T_{AS}$$
 = peak torque of motor (Nm)

SELECTION

BACKLASH FREE TORQUE LIMITER

According to feed force

Spindle drive

$$T_{AN} = \frac{s \cdot F_{V}}{2000 \cdot \pi \cdot \eta} \quad \text{(Nm)}$$

Timing belt drive

$$T_{AN} = \frac{d_0 \cdot F_V}{2000} \quad (Nm)$$

T_{AN}	=	load torque	(Nm)
_			, ,

$$S = \text{spindle pitch}$$
 (mm)
 $F_V = \text{feed force}$ (N)

η = spindle efficiency

$$T_{AN}$$
 = load torque (Nm)

$$d_0 = \text{pinion dia. (pulley)}$$
 (mm)
 $d_0 = \text{feed force}$ (N)

According to resonant frequency (SK 2 / 3 / 5 with bellows attachment – ES 2 / ESL with elastomer insert)

Usually high resonant frequencies of the couplings are required in order to make high acceleration values possible and to avoid excessive vibration.

For the purpose of caclulation the drive is reduced to a 2 mass sytem.

$$f_e = \frac{1}{2 \cdot \pi} \sqrt{C_T \times \frac{J_A + J_L}{J_A + J_L}} \quad (Hz)$$

$$C_T$$
 = torsional stiffness of the coupling (Nm/rad)

According to torsional sitiffness (SK 2 / 3 / 5 with bellows attachment – ES 2 / ESL with elastomer insert)

Transmission errors due to a torsional stress on the metal bellows:

$$\phi = \frac{180}{\pi} \cdot \frac{T_{\text{AS}}}{C_{\text{T}}} \text{ (Degrees)}$$

$$\phi$$
 = angle of turn (degrees)

$$C_T$$
 = torsional stiffness of coupling (Nm/rad)

$$T_{AS}$$
 = peak torque of motor (Nm)

According to the function system

Load holding version: On SK1 / SKP / SKN models the load holding version has a double load safety margin. Ensure that models with bellows (SK2, 3 and 5) are of adequate size. The overload torque in this case should not exceed the nominal torque rating of the coupling.

FACTORS AND SIZING CALCULATIONS

BACKLASH FREE ELASTOMER COUPLINGS ES2 / ESL

Temperature factor S_{υ}				Α	В
Te	mperatur	e (v)		Sh 98 A	Sh 64 D
>	-30°C	to	-10°C	1.5	1.7
>	-10°C	to	+30°C	1.0	1.0
>	+30°C	to	+40°C	1.2	1.1
>	+40°C	to	+60°C	1.4	1.3
>	+60°C	to	+80°C	1.7	1.5
>	+80°C	to	+100°C	2.0	1.8
>	+100°C	to	+120°C	_	2.4

Start factor S

-			
Z _h	up to 120	120 - 240	above 240
S _Z	1.0	1.3	on request

Shock and load factor S.

Uniform load	$S_A = 1.0$
Non-uniform load	S_A = 1.8
High dynamics. frequent reversing loads	S_A = 2.5

T_{KN}	=	Rated torque of the coupling	(Nm)
\mathbf{T}_{Kmax}	=	Max. torque of the coupling	(Nm)
$T_{\rm S}$	=	Existing peak torque of the coupling	(Nm)
T _{AS}	=	Peak torque of the drive element	(Nm)
T_{AN}	=	Rated torque of the drive element	(Nm)
\mathbf{T}_{LN}	=	Rated torque of the driven element	(Nm)
\mathbf{P}_{LN}	=	Power of the driven element	(KW)
n	=	Speed	(rpm)
\mathbf{J}_{A}	=	Motor's moment of inertia	(kgm²)
$J_{\scriptscriptstyle ackslash}$	=	Machine's moment of inertia (Spindle + slide + workpiece)	(kgm²)
\mathbf{J}_1	=	Moment of inertia of a coupling half at the driving end	(kgm²)
\mathbf{J}_2	=	Moment of inertia of a coupling half at the driven end	(kgm²)
m	=	Ratio of the moments of inerta driving to driven element	
υ	=	Temperature of the area around the coupling	
		(observe radiant heat)	
S_v	=	Temperature factor	
\mathbf{S}_{A}	=	Shock or load factor	
\mathbf{S}_{Z}	=	Start factor (factor for the number of starts/hour)	
\mathbf{Z}_{h}	=	Cycle of starts	(1/h)

Selection of the Elastomer Coupling

1. Calculation example without shock or reversing loads

The rated torque of the coupling (T_{KN}) needs to be higher than the rated torque of the driven element (T_{LN}) times the temperature factor S_v at the coupling for the application. If T_{LN} is not known, T_{AN} can be used for the calculation instead.

Condition:

$$\mathbf{T}_{\mathsf{KN}} > \mathbf{T}_{\mathsf{LN}} \times \mathbf{S}_{\upsilon}$$

Auxiliary calculation:

$$\mathbf{T}_{LN} = \frac{9550 \times \mathbf{P}_{LN}}{\mathbf{n}}$$

Calculation example: (No loads and shocks)

Drive face: DC - motor

 $T_{\text{AN}} = 119 \text{ Nm}$

Coupling conditions:

Driven face: Pump $T_{LN} = 85 Nm$

υ = **70**°C $S_{1} = 1.7 \text{ (for } 70^{\circ}/\text{Type A)}$

Condition:

 $\textbf{T}_{\text{KN}}{>}\textbf{T}_{\text{LN}}~\textbf{x}~\textbf{S}_{\upsilon}$

T_{KN} > 85 Nm x 1,7

T_{KN} > 144,5 Nm

Result:

A coupling type EK 2/150/A (T_{KN} = 160 Nm) is selected.

2. Calculation example with shock loads

In all cases the maximum rated torque (T_{Kmax}) of the coupling can not be exceeded. First calculate the rated torque (T_{KN}) of the coupling same as above. Compare this result to the peak torque (\mathbf{T}_S) times the start factor (\mathbf{S}_T) times the temperature factor (\mathbf{S}_U) for the application. The greater of the two values must be less than (TKmax) of the coupling.

Condition:

$$T_{KN} > T_{LN} \times S_{\upsilon}$$

Auxiliary calculation:

Condition:

$$T_{Kmax} > T_S \times S_Z \times S_U$$

Auxiliary calculation:

$$T_S = \frac{T_{AS} \times S_A}{m+1}$$

 $\mathbf{J}_{A} + \mathbf{J}_{1}$

R+W: EXPERTISE AND KNOW-HOW

BACKLASH FREE TORQUE LIMITER

Quality and know-how for couplings in servo and stepper motor systems:

Performance demands placed on drive technology have dramatically and steadily increased over the past few years. Our company **R+W** is proud to have reached a leading market position within this same time period, and we continue to work hard in the areas of design and technical development to stay ahead. **R+W** has representatives in more than 40 countries around the world and is continuing to open new branches each year.

Our range of high quality precision couplings meets the performance requirements of the most demanding applications. Still this is not enough to satisfy our engineering staff. We are constantly developing new solutions and new designs, and opening up new possibilities for our customers.

We want you to contact us, and to give us the opportunity to create a solution and to earn your business. Every person on the staff at **R+W** knows that quality comes from his or her personal engagement with the customer.

Benefit from our quality and efficiency:

We are ISO 9001 certified. Our production and customer service teams have been organized to maximize efficiency and to minimize delivery times.

Extensive quantities of components and finished goods inventory are kept on hand in order to ensure the fastest possible delivery — often within one day. Special designs are also a major part of our business. They are immediately processed, designed, and built. Standard and custom designs alike are supported by proprietary software, developed by $\bf R+W$, to calculate performance limits such as resonant frequencies and load capacities.

R+W continues to reinvest to ensure that our couplings remain on the cutting edge of development, and to improve their efficiency and operating dependability for your applications.

R+W is the first manufacturer of safety couplings with TÜV certification:

The complete line of **R+W** safety couplings was put through a complex series of tests by TÜV Sud and met all of the requirements for certification. These tests included normal wear, number of disengagements, accuracy of disengagement torque setting, and overall function and safety. During testing, overload events were simulated through dynamic changes to the operating torque and running speed.

Result: The torque limiters meet all of the requirements of the German GPSG law, a major objective of the EG directive.

Special low cost rust protection process:

Corrosion protection equivalent to that of galvanizing and chrome plating is available.

The positive features of this treatment include good resistance to wear and corrosion.

The parts have proven resistant to salt spray in tests pursuant to DIN 50021 over a period of 140 hours.

This process represents a genuine low cost alternative to expensive stainless steel materials.

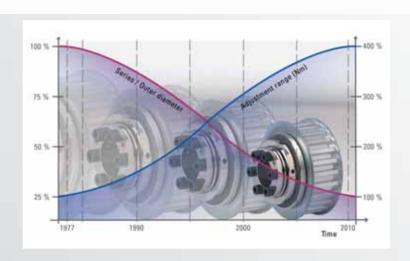
Couplings with this surface treatment have been used for many years by well known companies in the food industry.

Download:

Configurable drawings and models are available for all standard designs of **R+W** couplings at our website: **www.rwcouplings.com**.

DIN ISO 9001

Quality awareness is a high priority at **R+W**.


Being certified according to DIN ISO 9001 since 1997 has meant the refinement of quality procedures and implementation of all necessary documentation systems.

Constant monitoring and improvement of the system ensures a technically superior product with a quality standard second to none.

PRODUCT DEVELOPMENT

More compact and higher torque capacity

The trend for safety couplings in the coming years will call for a more compact, higher torque capacity model. This becomes possible through the use of special materials, as well as the implementation of new procedures and techniques in manufacturing and the production of individual components.

Fiberglass reinforced high-strength plastic

After the successful introduction of alternative materials such as fiberglass reinforced thermoplastic to precision couplings, it becomes realistic to offer torque limiters, either partially or entirely out of fiberglass reinforced plastic in the near future. High-strength plastic materials provide the mechanical designer with additional freedom in the layout of the machine compared to standard materials such as aluminum or steel.

New product line ST from 2,000 – 165,000 Nm

The implementation of an ST torque limiter minimizes machine downtime, resulting in an increase in production capacity. The ST torque limiters are designed for high torque applications. This is possible through equally positioned torque modules around the circumference of the base element.

Torque Limiter for indirect drives

- Compact, simple design
- Precise overload protection
- Torsionally rigid
- Integral bearings for timing belt, pulley or sprocket

Torque Limiter for direct drives

- Compensation for misalignment
- Precise overload protection
- Vibration damping

Torque Limiter for direct drives

- Torsionally rigid
- Compensation for misalignment
- Precise overload protection

Torque Limiter with gear coupling

- High power density
- Compensations for misalignment
- Low restoring force
- Resilient

Request a copy of the complete ST catalog today!

Expertise and Know-how for your particular application.

R+W Antriebselemente GmbH Alexander-Wiegand-Straße 8 D-63911 Klingenberg/Germany

Tel. +49-(0)9372 - 9864-0 Fax +49-(0)9372 - 9864-20

info@rw-kupplungen.de www.rwcouplings.com

QUALITY MANAGEMENT We are certified according to ISO 9001-2008

TGA-ZM-05-91-00 Registration No. 40503432/2

The information mentioned in this document is based on our present knowledge and experiences and does not exclude the manufacturer's own substantial testing of the equipment. So this is no obligatry assurance even with regard to protection rights of Third Parties. The sale of our products is subject to our General Conditions of Sale and Delivery.

THE R+W-PRODUCT RANGE

TORQUE LIMITERS Series SK + ST

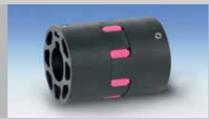
From 0.1 – 165,000 Nm, Bore diameters 3 – 290 mm Available as a single position, multi-position, load holding, or full disengagement version Single piece or press-fit design

BELLOWS COUPLINGS Series BK / BX

From 2 – 100,000 Nm Bore diameters 3 – 280 mm Single piece or press-fit design

LINE SHAFTS Series ZA / ZAE / EZ / EZV

From 10 – 25,000 Nm Bore diameters 5 – 140 mm Available up to 6 mtr. length


MINIATURE BELLOWS COUPLINGS Series MK

From 0.05 – 10 Nm Bore diameters 1 – 28 mm Single piece or press-fit design

SERVOMAX® ELASTOMER COUPLINGS Series EK

From 2 – 25,000 Nm, Shaft diameters 3 – 170 mm backlash-free, press-fit design

ECOLIGHT® ELASTOMER COUPLINGS Series TX 1

From 2 – 810 Nm Shaft diameters 3 – 45 mm

LINEAR COUPLINGS Series LK

From 70 – 2,000 N Thread M5 – M16

POLYAMIDE COUPLINGS MICROFLEX Series FK 1

Rated torque 1 Ncm Bore diameters 1.5 – 2 mm